Project no: PN-II-ID-PCE-2011-3-0522: « Giga and terra-watt laser interaction with carbon, tungsten and beryllium films » Project Director: Dr. C.P.Lungu, INFLPR, Magurele Scientific report (Abstract)

15 December 2011

In the frame of Stage 1: "C, W and Be coatings interaction with the pulsed laser beam in vacuum. Coatings characterization before and after laser beam interaction experiment", were performed deposition using thermionic vacuum arc method of a set of W and C layers. The deposition records and the characterization results are presented:

A. W deposition

Substrate: 4x graphite substrates of 12 mm x16 mm

5x silicon substrates of 12 mm x14 mm

The correction factor used to set the quartz monitor was calculated using the following formula:

$$f_{correction} = \left(\frac{d_{X-quartz}}{d_{X-probes}}\right)^2$$

Using the above formula and sample-cathode distance was obtained a 1.396 factor.

d _{W-quartz}	W-quartz d _W -probes			
(cm)	(cm)			
26	22			
f _W =1.396				

The coating were performed using the following parameters:

Nr.	U _a (kV)	I _a (A)	I _f (A)	Р	Thickness	Time
				(Torr)	(nm)	(min)
1	0.75	1.9	42	1.5x10 ⁻⁵	10	3
2	1.2	2	41	1.4x10 ⁻⁵	30	12
3	1.2	2	41.5	1.5x10 ⁻⁵	50	18
4	1.2	2	43	1.2x10 ⁻⁵	100	33
5	1.4	1.9	44.5	1.2x10 ⁻⁵	150	48
6	1.8	1.8	44.6	9.6x10 ⁻⁶	180	57

= 200nm

T_{substrate}=600⁰C

TOTAL thickness

TOTAL deposition time = 64min

C substrates C uartz C uartz

Fig.1 The set-up used for W deposition

B. C deposition

Substrate: 4x graphite 12x16 (the previous W coated substrates)

5x Si 12x15

Quartz correction factor	(cm)	(cm)	
$f = -\left(\frac{d_{X-quartz}}{d_{X-quartz}}\right)^2$	25	23	
$J_{correction} - \left(d_{X-probes} \right)$	f _W =1.18		

Deposition parameters:

Nr.	U _a (kV)	I _a (A)	I _f (A)	Р	Thickness	Time
				(Torr)	(nm)	(min)
1	1.3	1.8	37	1.5x10 ⁻⁵	100	-
2	1.5	1.8	37	1.5x10 ⁻⁵	200	2
3	1.4	1.9	38.3	1.5x10 ⁻⁵	500	6
4	1	2	38	1.5x10 ⁻⁵	830	11
5	0.8	2.4	40	1.5x10 ⁻⁵	1000	14
6	0.7	2.6	39	1.5x10 ⁻⁵	1350	18
7	0.9	2.5	39.4	1.5x10 ⁻⁵	1950	28

T_{substrate}=600⁰C

TOTAL deposition time = 37min TOTAL thickness = 2500 nm

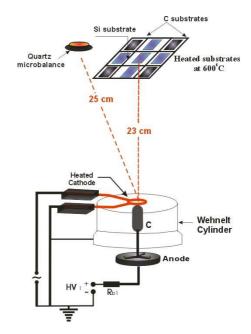


Fig.2 Carbon deposition set-up

The film structure is presented in Fig.3

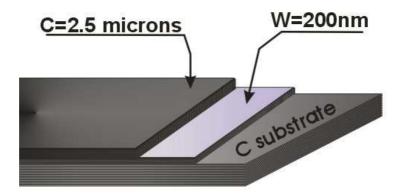


Fig.3 W+C multilayer thin film structure

D. Irradiation of the prepared samples: plasma plume emission spectra.

Using the terawatt laser system (Tewalas), 20-30 x 10^{-15} s pulse duration, 400-450 mJ pulse energy, were irradiated the prepared samples.

The spectra recorded in the 10-22 nm domain from 10 successive pulses in the same location on the sample.

Was observed that after 2 pulses appears the emission corresponding to the W element, and slowly disappear. (Fig.4)

Fig. 5 shows the emission in a zone where C lines does not exist, but only a cvasi continue W emission for all 10 successive pulses

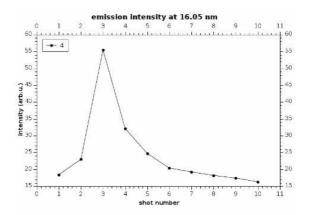


Fig. 4. Emission intensity of the W peak at 16.05 nm

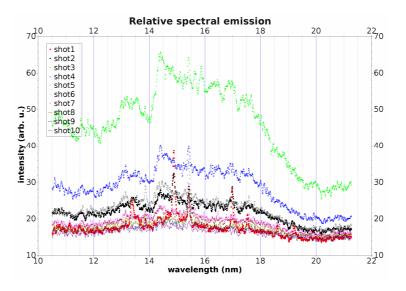


Fig.5 The emission spectra in the 10-22 nm range.

E. Optical microscopy investigation

Using a high resolution optical microscope, the wear produced by the laser shot is presented in Fig. 6

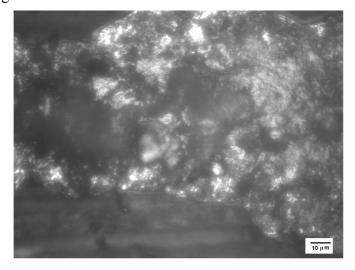


Fig.6. Wear produced by the laser shots on the prepared multilayer W - C film Using SEM, EDS and Raman spectroscopy, the samples will be characterized further.

Project Director, C. P. Lungu